HALOGENOALKANES (HALOALKANES)

Structure Contain the functional group C-X where X is a halogen (F, Cl, Br or I)

Types Halogenoalkanes - halogen is attached to an aliphatic skeleton - alkyl group

Haloarenes - halogen is attached directly to a benzene (aromatic) ring

Classification Classified according to what is attached to the functional group.

Names Based on the original alkane with a prefix indicating halogens and their position.

CH₃CH₂Cl₂ 1-chloropropane CH₂ClCHClCH₃ 1,2-dichloropropane

CH₃CHC*l*CH₃ 2-chloropropane CH₃CBr(CH₃)CH₃ 2-bromo-2-methylpropane

Q.1 Draw and name all the structural isomers of $C_3H_6Br_2$, C_4H_9Cl and $C_5H_{11}Br$.

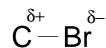
Q.2 Classify the structural isomers of C_4H_9Cl and $C_5H_{11}Br$ as 1° , 2° or 3° .

Physical properties

Boiling points

- boiling point increases with mass
- for isomeric compounds the greater the branching, the lower the boiling point

Solubility • halogenoalkanes are soluble in organic solvents but insoluble in water


NUCLEOPHILIC SUBSTITUTION REACTIONS

F322

Theory

- halogens have a **greater electronegativity** than carbon
- a dipole is induced in the C-X bond and it becomes polar

• the carbon is thus open to attack by nucleophiles

polarity in a C-Br bond

- Nucleophiles examples are OH⁻, CN⁻, NH₃ and H₂O
 - possess at least one LONE PAIR of electrons
 - are attracted to the slightly positive (electron deficient) carbon

Basic

- mechanism the **nucleophile** uses its lone pair to provide the electrons for a new bond
 - as carbon can only have 8 electrons in its outer shell a halide ion is displaced
 - the result is **substitution** following attack by a nucleophile
 - the mechanism is therefore known as NUCLEOPHILIC SUBSTITUTION

Rate of reaction

the rate of reaction depends on the strength of the C-X bond

C-I .238.... kJmol⁻¹ C-Br ... kJmol⁻¹ C-C*l* kJmol⁻¹kJmol⁻¹

WEAKEST BOND

EASIEST TO BREAK FASTEST REACTION

Advanced work

This form of nucleophilic substitution is known as S_N2 ; it is a bimolecular process. An alternative method involves the initial breaking of the C-X bond to form a carbocation, or carbonium ion, (a unimolecular process - S_N1 mechanism), which is then attacked by the nucleophile. S_N1 is favoured for tertiary haloalkanes where there is steric hindrance to the attack and a more stable tertiary, 3°, carbocation intermediate is formed.

NaOH Reagent **AQUEOUS** sodium (or potassium) hydroxide

> Conditions Reflux in **aqueous** solution (SOLVENT IS IMPORTANT)

Product Alcohol

Nucleophile hydroxide ion (OH⁻)

Equation e.g. $C_2H_5Br(I)$ + NaOH(aq) $C_2H_5OH(I)$ + NaBr(aq)

WARNING It is **important to quote the solvent** when answering questions. **Elimination** takes place when ethanol is the solvent - SEE LATER

This reaction (and the one with water) is sometimes known as HYDROLYSIS

KCN Reagent Aqueous, alcoholic potassium (or sodium) cyanide

> **Conditions** Reflux in aqueous, alcoholic solution

Product Nitrile (cyanide) Nucleophile cyanide ion (CN⁻)

 $C_2H_5Br + KCN(ag/alc) \longrightarrow$ Equation C₂H₅CN +

Mechanism

Importance reaction is that it extends the carbon chain by one carbon atom The CN group can then be converted to carboxylic acids or amines.

Hydrolysis C₂H₅CN $2H_2O \longrightarrow C_2H_5COOH + NH_3$

Reduction $C_2H_5CN + 4[H]$ — $-> C_2H_5CH_2NH_2$ NH₃ Reagent Aqueous, alcoholic ammonia (in EXCESS)

Conditions Reflux in aqueous, alcoholic solution under pressure

Product Amine (or its salt due to a reaction with the acid produced)

Nucleophile Ammonia (NH₃)

Equation $C_2H_5Br + NH_3$ (ag/alc) \longrightarrow $C_2H_5NH_2 + HBr$

 $HBr + NH_3(aq/alc) \longrightarrow NH_4Br$

 $C_2H_5Br + 2NH_3(aq/alc)$ ---> $C_2H_5NH_2 + NH_4Br$

Mechanism

Why excess ammonia?

The second ammonia molecule ensures the removal of HBr which would lead to the formation of a salt.

A large excess of ammonia ensures further substitution doesn't take place

Problem

The **amine produced is also a nucleophile** (lone pair on the N) and can attack another molecule of haloalkane to produce a 2° amine. This in turn is a nucleophile and can react further producing a 3° amine and, eventually an ionic quarternary ammonium salt.

$$C_2H_5NH_2$$
 + C_2H_5Br -> HBr + $(C_2H_5)_2NH$ diethylamine, a 2° amine $(C_2H_5)_2NH$ + C_2H_5Br -> HBr + $(C_2H_5)_3N$ triethylamine, a 3° amine $(C_2H_5)_3N$ + C_2H_5Br -> $(C_2H_5)_4N^+Br^-$ tetraethylammonium bromide, (a 4° salt)

H₂O A similar reaction to that with OH⁻ takes place with water. It is **slower** as water is a **poor nucleophile.**

Equation e.g.
$$C_2H_5Br(l) + H_2O(l) \longrightarrow C_2H_5OH(aq/alc) + HBr(aq)$$

ELIMINATION REACTIONS OF HALOGENOALKANES

Problem

The products of reactions between halogenoalkanes and OH⁻ are influenced by the solvent. Both mechanisms take place simultaneously but the choice of solvent favours one route.

Solvent	Product	Action of OH⁻	Mechanism
WATER	ALCOHOL	NUCLEOPHILE	SUBSTITUTION
ALCOHOL	ALKENE	BASE	ELIMINATION

Reaction Reagent Alcoholic sodium (or potassium) hydroxide

> Reflux in alcoholic solution Conditions

Product Alkene Mechanism Elimination

Equation $C_3H_7Br + NaOH(alc) -$

Mechanism

- the OH ion acts as a base and picks up a proton
- the proton comes from a carbon atom next to the one bonded to the halogen
- the electron pair left moves to form a second bond between the carbon atoms
- the halide ion is displaced
- overall there is ELIMINATION of HBr.

What organic products are formed when concurrent substitution and elimination takes place with $CH_3CHBrCH_3$?

Complication The OH removes a proton from a carbon atom adjacent the C bearing the halogen. If there had been another carbon atom on the other side of the C-X, its hydrogen(s) would also be open to attack. If the haloalkane is unsymmetrical (e.g. 2-bromobutane) a mixture of isomeric alkene products is obtained.

What organic products do you get with alcoholic NaOH and CH₃CHBrCH₂CH₃? Explain your answers with a mechanism.

USES OF HALOGENOALKANES

Synthetic

The reactivity of the C-X bond means that halogenoalkanes play an important part in synthetic organic chemistry. The halogen can be replaced by a variety of groups via a nucleophilic substitution mechanism.

During the manufacture of ibuprofen, substitution of a bromine atom takes place.

Monomers chloroethene $CH_2 = CHCl$ tetrafluoroethene $CF_2 = CF_2$

Polymers poly(chloroethene) PVC $-(CH_2 - CHCl)_n$ packaging

poly(tetrafluoroethene) PTFE $-(CF_2-CF_2)_n$ non-stick surfaces

CFC's dichlorofluoromethane CHFCl₂ refrigerant

trichlorofluoromethane CF₃C*l* aerosol propellant

blowing agent

bromochlorodifluoromethane CBrClF₂ fire extinguishers

 CCl_2FCClF_2 dry cleaning solvent

degreasing agent

All the above were chosen because of their.. • low reactivity

volatility

non-toxicity

PROBLEMS WITH CFC's

Ozone layer • CFC's have been blamed for environmental damage by thinning the ozone layer

- Ozone absorbs a lot of harmful UV radiation
- CFC's break up in the atmosphere to form free radicals

$$CF_2Cl_2$$
 \longrightarrow CF_2Cl^{\bullet} + Cl^{\bullet}

the free radicals catalyse the breaking up of ozone

Solution

- CFC's were designed by chemists to help people
- chemists now synthesise alternatives to CFC's to protect the environment such as hydrocarbons and HCFC's
- CO₂ can be use as an alternative blowing agent
- this will allow the reversal of the ozone layer problem